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PREFACE

The work reported herein was conducted by the Amold Engineering Development Center
(AEDC), Air Force Mareriel Command (AFMC), under Program Element 65807F, at the request
of AEDC/DOT, Armold AFB, TN 37389-9011. The AEDC Project Managers were Maj. Bret
Indermill and Hunter Vaughn. The results of the tests were obtained by Sverdrup Technology,
Inc., AEDC Group, support and technical service contractor for the aerospace flight dynamics test
facilities at AEDC, AFMC, Arnold AFB, TN. The analysis was performed during the period from
October 1997 through November 1997 under AEDC Job Number 3331. This manuscript was
approved for publication on May 13, 1998,

A cooperative program between the United States Air Force (USAF) and the German Minis-
try of Education and Science, Research and Technology (BMBF) was responsible for the
execution of the test. The responsibilities of the partners and the objectives of the program are
established in a Memorandum of Understanding (MOU) entitled “Wind-Tunnel and Flight Test
Data Correlation based on Transonic Technology Demonstrator.” The program is structured such
that the contribution of the partners is balanced in both cost and technical responsibilities. Tech-
nical manager and primary point of contact is Dr. J. W. Davis for the USAF; Dr. E. Stanewsky of
DLR (formerly Dr. Lawaczeck) is the point of contact for the BMBF.
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1.0 INTRODUCTION

A demonstration of a prototype Pressure Sensitive Paint (PSP) data acquisition system was
performed during a test of the Dornier Alpha Jet with a Transonic Technology (TST) wing in the
Amold Engineering Development Center’s (AEDC) Propulsion Wind Tunnel (PWT) 16T in Sep-
tember 1993, For that test, an AEDC paint formulation was applied to the upper wing surface, and
an 8-bit video camera was used to acquire images of the painted surface. The specifications of the
prototype system and the results of the test are documented in Ref, 1. The model returned to
AEDC in August 1997 and was installed in Tunnel 16T for more aerodynamic testing. AEDC has
made considerable improvements to the prototype PSP system, and took this opportunity to uti-
lize the new capability to acquire surface pressure data on one-haif of the Alpha Jet model. A new
paint developed by the University of Washington, designated FIB7, was used because of its supe-
rior performance characteristics as compared to the AEDC paint. The 8-bit video camera has been
replaced by 16-bit scientific-grade CCD cameras with 1,024- x 1,024-pixel spatial resolution, and
the paint illumination system signal-to-noise ratio has been improved. A description of the new
PSP system and results from the test are presented herein. Comparisons are made between PSP
and conventional pressure measurements and Computational Fluid Dynamics results. Also, the
paint's effects on wing surface pressure distribution and vehicle aerodynamic performance are
presented.

2.0 APPARATUS

2.1 TEST ARTICLE

The test article was a 1/10-scale model of the Domier Alpha Jet Technology demonstrator
with a TST wing. It was jointly designed by Dornier (fuselage) and Deutsche Aerospace (DASA)
(wing). Details of the TST madel are presented in Fig. 1. The model was designed to cryogenic
testing standards and had a surface finish of 0.2 pm. Seven canopy and four fuselage pressure ori-
fices were located as shown in Fig. 1a. The starboard wing was instrumented with 169 pressure
orifices in the upper and lower surfaces. The pressure orifices were distributed in chordwise rows
at five span stations as shown in Fig. 1b. The starboard half of the model (side that was instru-
mented) was painted with the FIB7 PSP. The wing, canopy, and fuselage pressure orifice
designations and locations are listed in Table 1.

2.2 PRESSURE SENSITIVE PAINT THEORY

As described in Refs. 2 and 3, when a luminescent molecule absorbs a photon of appropriate
energy, the molecule enters an excited state. From this state, the molecule decays to the ground
state through a series of transitions, with at least one resulting in the em:ssnon of a photon. Fluo-
rescence is the emission of a photon with a lifetime on the order of 10 sec and arises from a
smglet transition. In contrast, phosphorescence is a delayed emission with a lifetime on the order
of 10 10 100 sec and arises from a triplet-singlet transition. Most luminescent molecules emit
very little fluorescence and strong phosphorescence (which is measured). A schematic of the low-
est energy level transitions is shown in Fig. 2. Since the energy decay resulting in the photon
emission is never complete, the emitted photon will have less energy and, therefore, a longer
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wavelength than the original exciting photon. The shift in emission wavelength from the absorp-
tion wavelength permits the measurement of emission intensity, or luminescence, with the use of
appropriate filters. An alternate transition to the ground state is provided by collision with an oxy-
gen molecule. Rather than emitting a photon, the excess energy of the luminescent molecule is
absorbed by the oxygen molecule during a collisional deactivation. Increasing amounts of oxy-
gen increase the collisional deactivations, resulting in a decrease in the amount of luminescence.
Since the number of oxygen molecules is directly proportional to the local pressure, low-pressure
regions on the surface of a model will be brighter than those of high pressure. The process can be
modeled using a simplified form of the Stern-Volmer relation (ignoring temperature effects):

IO
T=1+KPo, (1)

where I, is the PSP lJuminescence in the absence of oxygen, I and P,_ are the PSP luminescence
and pamal pressure of oxygen at some pressure, and K, is the Stern-?Volmer constant. Presented
in Fig. 3 is a graphic representation of the inverse of Eq. (1) for several Stern-Volmer constants.
Paints with a large K have higher sensitivity at low absolute pressures and lower sensitivity at
high absolute pressures. Paints with a small K4 have a lower, but more constant, sensitivity across
the pressure range. Also presented in Fig. 3 is the response of the University of Washington FIB7
PSP at 70°F.

2.3 PRESSURE SENSITIVE PAINT

Two layers of paint typically are applied to the model surface. The first is a white substrate
that helps reflect the luminescent light away from the model surface and provides a uniform back-
ground. The first layer consisted of the proprietary FIB7 polymer with titanium dioxide. The
second, the PSP layer, contains the FIB7 polymer and the luminescent molecule, platinum tetra
pentafluorphenyl porphine (PtTFPP). The FIB7 polymer is porous to oxygen molecules permit-
ting contact with the PtTFPP molecules. The absorption and emission spectral characteristics for
FIB7 are presented in Fig. 4. Each spectrum was normalized by its peak output. The response of
the paint to pressure and temperature was measured in a controlled environment using a special
calibration apparatus. The response from a sample of the paint used for the TST test is presented
in Fig. 5. The intensity ratio is the inverse of the intensity at each pressure and temperature
divided by the inmtensity at the reference condition (2,000 psfa and 70°F).

2.4 PSP DATA SYSTEM

A schematic of the PSP data acquisition and processing system used during the test is shown
in Fig. 6. The starboard half of the model was painted with the FIB7 PSP and illuminated with
xenon-arc lamps. Ninety percent or more of the light between 350 and 550 nm was reflected by
two cold mirrors, each set at 67.5-deg incidence to the incoming light, through a short wave pass
(SWP) filter designed to pass wavelengths below 550 nm and onto the model. The filtered light
spectral characteristics are presented in Fig. 4. The filtered light from the xenon-arc lamps passed
through optics which spread the light to a diameter of approximately 4 fi at the tunnel centerline.
A shutter placed in front of each lamp was opened to pass light only while images were being
acquired to reduce photodegradation of the paint. The luminescent light emitted by the paint
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passed to the camera detector through a narrow bandpass filter centered at 650 nm with a full
width at half maximum of 40 nm. Three scientific-grade CCD cameras were used to obtain black-
and-white images of the luminescent surface. The CCD array in each camera had 1,024- x 1,024-
pixel spatial resolution and was digitized at 16-bit gray-level resolution.

3.0 PROCEDURES

3.1 TEST CONDITIONS

The test was conducted at nominal Mach numbers of 0.3, 0.6, and 0.835 at Reynolds num-
bers (based on mean aerodynamic chord) of 1.0, 1.5, 2.0, and 2.7 million. The nominal test
conditions established during the test are given in Table 2. After establishing the desired test con-
dition, data were recorded at selected angles of attack using the pitch-pause technique. The angle
of attack was varied from O to 6 deg.

3.2 DATA ACQUISITION

Model aerodynamic loads data, conventional pressure data, and PSP images were acquired
automatically under the control of the facility computer. The facility computer set the requested
model attitude and signaled the master personal computer (PC) to acquire PSP data while the
facility computer acquired the loads and conventional pressure data. The master PC commanded
the power supplies for the xenon-arc lamps on the top wall and upper and lower side wall to
increase to full power, and the shutter in front of each lamp to open. The master PC, and a slave
PC connected to it, acquired images of the top and side surfaces of the model. After image acqui-
sition was complete, the lamp power was reduced and the shutters were closed. Next, the master
PC commanded a third PC to acquire PSP data on the bottom surface. The third PC commanded
the lower sidewall and bottom wall lights to increase to full power and open the shutters, after
which the PC acquired the image. Again, the light power was reduced and the shutters were
closed after image acquisition. All images were stored on the workstation (see Fig. 6) hard drive
via Ethernet. The camera exposure times were set for a particular test condition (Mach number
and total pressure) to maximize the signal-to-noise ratio. The camera shutter exposure times var-
ied from 0.9 to 5 sec depending on the tunnel conditions. The master PC returned a signal to the
facility computer after all images were acquired, allowing the facility computer to move the
medel to the next attitude. A file containing tunnel conditions and conventional pressure data, one
for each data point, was transferred from the facility computer to the workstation via Ethernet.

3.3 PSP DATA REDUCTION

Determining I, in Eq. (1) is not practical in the wind tunnel environment. As described in
Ref. 2, taking the ratio of an image at a known reference (wind-off) condition to an operating
(wind-on) condition eliminates the need to determine I, Also, the effects of nonuniformities in
illumination and paint thickness on the amount of luminescence are eliminated. The ratio of wind-
off to wind-on using Eqg. {1) is:

I/L; 1~ 1+KpP

ref
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where L.¢ and P, ; are the PSP luminescence and pressure at a known wind-off condition, and I
and P are the PSP luminescence and surface pressure at the wind-on condition. The surface pres-
sure can then be determined from:

I
P=A+B—'I=-f 3

where A and B are the calibration coefficients for the paint. Taking the ratio of wind-off to wind-
on images assumes the model position and shape in the image remain constant. However, at the
wind-on condition, the model moves in the camera’s field of view as a result of deflections from
operating loads. Using the image registration technique described by Bell (Ref. 4), small targets
were placed on the surface at known coordinates so that the wind-on image could be stretched
and shifted (registered) to match the wind-off image. The ratio of the wind-off image to the regis-
tered wind-on image was computed for each pixel in the image. The constants A and B were
determined in situ from a least-squares fit of the conventional pressure coefficient (instead of
pressure) data and intensity ratio data at known comesponding locations on the model surface.
These constants were used to convert intensity ratio to surface pressure coefficient (CP) over the
painted surface. A separate curve fit was determined for the top and bottom cameras, using all
pressure taps on the upper and lower surface of the wing, respectively, at each data point. The
application of the in siru calibration accounts for gross temperature changes from the temperature
at the wind-off condition but does not account for local temperature variations. The curve fit
determined for the top camera was used to convert the image data for the side camera to CP since
there were no pressure taps in the view. If the surface temperature were measured globally like
pressure, it would be possible to use an a priori calibration, determined in a calibration apparatus
as a function of intensity ratio and temperature, to convert the intensity ratio data to pressure coef-
ficient. The use of an a priori calibration method could eliminate the need for pressure taps. The
registration marks were also used to relate the 2-D image coordinate system to the 3-D model
coordinate system. The photogrammetry methods described by Bell (Ref. 4) were used to overlay
the 2-D images from each camera onto a 3-D mesh grid of the modet surface. If a vertex point
was visible to more than one camera, the image with the most normal view of the surface was
used to supply data at that point. A PLOT3D solution file was generated for each data point with
pressure coefficient data at each vertex point in the grid.

4.0 RESULTS AND DISCUSSION

4.1 PRESSURE MEASUREMENT COMPARISONS

A comparison of pressure coefficient (CP) data from conventional pressure and PSP mea-
surements versus wing chord position (X/C) is presented in Figs. 7-9. The data at Mach numbers
0.6 and 0.835 agree very well with the conventional measurements. Although the PSP data at
Mach number (.3 appear to have more noise and do not compare as well as that at 0.6 and 0.835,
it is important to remember that PSP is an absolute pressure measurement. Since the data have
been non-dimensionalized, the scales for the Mach number (.3 data are blown up compared to
those at 0.6 and 0.835. The error defined as the difference between the conventional pressure
measurement and the PSP measurement at corresponding locations is presented in Fig. 10. The
Mach number 0.3 data at chord Reynolds number 1.0 have comparable errors to those at the
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higher Mach numbers. Recall that the PSP luminescence decreases with increasing pressure (see
Fig. 2), resulting in a decrease in the signal-to-noise ratio (SNR). As can be seen in Fig. 10, the
PSP measurement error increases as the Reynolds number (i.e., pressure) increases. The in situ
calibration method also introduces error into the PSP measurement. Presented in Fig. 11 are sam-
ples of the conventional pressure measurement vs. intensity ratio data that were used to determine
the calibration coefficients for Eq. (3). It is difficult to compute an accurate curve fit when the
surface pressure variation and, therefore, luminescence variation, is small across the surface to be
calibrated. The data at Mach number 0.3 and 0-deg angle of attack demonstrate this effect. This is
one important reason for the development of an a priori calibration method that would not require
the use of conventional surface pressure measurements.

4.2 EFFECTS OF PAINT ON DATA

The application of PSP to a wind tunnel model can change the shape of the surface to vary-
ing degrees depending upon the person epplying it and the type of PSP used. Every attempt is
made to make the paint layers as thin and smooth as possible. The paint had little or no effect on
the wing pressure distribution at Mach number 0.6, and data were not available to make compari-
sons at Mach number 0.3. Also, the paint had no effect on the canopy pressure data at Mach
numbers 0.6 and 0.835. However, the wing pressure distribution at Mach number 0.835 was
affected to varying degrees, depending upon the angle of attack and Reynolds number. The
effects of the paint on the pressure distribution (determined from the conventional pressure mea-
surements) at Mach number 0.835 are presented in Fig. 12. Included in the plots at Mach number
0.835 and chord Reynolds number 2.7 are data where transition was fixed through the use of
boundary-layer trips. Typically, the shock location moves forward as the boundary layer transi-
tions earlier on the upper surface of a wing with supersonic flow. Such is the case with the trips-
on data compared to the clean (paint-off) configuration. The paint-on data agreed with the paint
off with trips data at the 44-percent span station for (-deg angle of attack and Rec 2.7 (see Fig.
12s), indicating that the transition location was probably the same. However, at 6-deg angle of
attack, the shock location at the 44-, 66-, and 88-percent span stations for the paint-on data was
aft of that for the paint-off configuration. The wing notch is between the 44- and 66-percent span
locations and most likely affected the boundary layer-shock interactions at these conditions.
There were no significant Reynolds number effects at Mach number 0.6. The Reynolds number
effects on the PSP pressure distribution at Mach number 0.835 are presented in Fig. 13. The
expected trend of higher Reynolds numbers moving the shock location forward can be seen in the
data at O-deg angle of attack. Again, at 6-deg angle of attack, the trend is totally reversed, with the
crossover starting between 2- and 4-deg angle of attack. The true Reynolds number effects on the
TST model cannot be determined from the PSP data because of the effects the paint had on the
pressure distribution.

The effects of the paint and boundary-layer trips (paint off) on the lift, drag, and pitching-
moment coefficients are presented in Fig, 14. The paint had little or no effect on the lift and pitch-
ing moment coefficients except at angles of attack where separation on the wing was affected.
The drag was increasingly affected by the paint as Reynolds number increased to the point of
adding approximately 10-15 drag counts at the highest Reynolds number. The boundary-layer
trips had a more significant effect on the data than did the paint.
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The continuous surface pressure distribution that PSP provides is presented in Fig. 15. The
previously discussed Reynolds number effects at Mach number 0.835 can easily be seen with the
largest change occurring at the wing notch and root.

4.3 PSP TO COMPUTATIONAL FLUID DYNAMICS (CFD) COMPARISONS

Comparisons of PSP data and CFD Navier-Stokes solutions, using a x-g (Ref. 5) rbulence
model, are presented in Fig. 16. The flow-field solution was generated using the Chimera overset
grid approach (Ref. 6). The agreement is very good at the low angles of attack; however, the sep-
aration characteristics could not be simulated at the higher angles of attack. The computational
effort to tune the turbulence model to improve separation prediction at higher angles of attack will
continue to be investigated.

5.0 SUMMARY

An improved Pressure Sensitive Paint (PSP) data acquisition system was used to acquire sur-
face pressure data on one-half of the Dornier Alpha Jet model. A new paint developed by the
University of Washington was used because of superior performance characteristics, primarily
lower temperature sensitivity, compared to the AEDC paint used in the previous test. A signifi-
cant improvement was made to the signal-to-noise ratio through the use of new filters in the paint
illumination and detection system. Also, the digital cameras provided a significant increase in
both resolution and accuracy as compared to the 8-bit video camera used in the previous test,
Some conclusions and observations from the test are as follows:

e The pressure sensitive paint data agree very well with conventional pressure
measurements.

® An a priori calibration method is needed to overcome limitations using the in situ
method.

o The paint affected the surface pressure distributions at Mach number 0.835 to varying
degrees depending upon Reynolds number. The data at Mach number 0.6 were not
affected.

» The movement of shock location on the upper wing surface with changes in Reynolds
number behaved as expected at most, but not all, test conditions. The unexpected behav-
ior is believed to be a result of boundary layer-shock interactions near the wing notch and
root,

o The continuous pressure distribution provided by PSP better defines the shock locations
as compared with the sparse conventional pressure measurements,

s The effect of the paint on drag at the lower Reynolds numbers was less than the balance
uncertainty and had no effect on the lift and pitching moment. However, the paint added

10
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up to 15 counts of drag at the highest Reynolds number, which was on the order of twice
the balance uncertainty, while still having no effect on lift and pitching moment.

e PSP is a valuable tool for CFD code validation becanse it can measure a continuous pres-
sure distribution on the model surface in a form similar to CFD results.
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Table 1. TST Wing, Canopy, and Fuselage Pressure Orifice Designation and Location

Section& | XC FS. | B.L. | WL Secfion& | WG FS. | BL | WL
Tap No. ] Tap No.
101 1.000 | B16.78 | 63.87 | 73.84 | 201 1.000 | 823.23 | 98.90 | 72.29
102 0.980 | 805.33 | 64.18 | 76.78 202 0.980 | 813.31 | 99.15 | 74.68
103 0920 | 793.34 | 64.40 | 78.88 203 0.920 | 802.10 | 99.35 | 76.54
104 0.870 | 778.68 | 64.67 | 81.41 204 0.870 | 781.01 | 99.54 | 78.39
105 0.810 | 761.09 | 64.08 | 84.40 205 0.810 | 776.15 | 99.79 | 80.80
106 0.740 | 74057 | 65.34 | 87.76 206 0.740 | 758.80 | 100.07 | 83.44
107 0.670 | 720.05 | 65.67 | 90.93 207 0670 | 741.45 | 100,32 | 85.83
108 0.600 | 699.52 | 65.99 | 93.97 208 0.600 | 724.11 | 100.55 | 88.03
109 0.530 | 679.00 | 66.30 | 96.91 209 0.530 | 706.77 | 100.77 | 90.06
110 0.480 | 658.48 | 66.59 | 99.66 210 0450 | £89.42 | 100.96 | 91.87
111 0.390 | 637.96 | 66.83 | 101.97 211 0.380 | 672.07 |101.11| 93.30
112 0.320 | 61744 | 67.00 | 103.65 212 0.320 | 654.73 | 101.20 | 84.23
113 0.250 | 596.91 | 67.10 | 104.56 213 0.250 | 637.38 |101.24 | 04.56
114 0.180 | 576.39 | 67.10 | 104.57 214 0.180 | 620.04 | 101.20 | 94.16
115 0.130 | 561.73 | 67.03 | 103.90 215 0.130 { 607.65 |101.11 | 93.33
116 0.090 | 550.00 | 66.90 | 102.65 216 0.080 | 597.74 }100.98 | 92.07
117 0.080 | 541.21 | 66.70 | 100.80 217 0.060 | 590.30 | 100.80 | 90.30
118 0.040 | 535.35 | 66.49 | 98.73 218 0.040 | 585.35 | 100.62 | 88.63
119 0.020 | 520.48 | 66.15 | 95.47 219 0.020 | 580.39 | 100.34 | 85.96
120 0.008 | 52596 | 65.80 | 92.23 220 0.008 | 577.42 | 100.07 | B3.43
121 0.000 | 523.62 | 65.23 | 86.77 221 0.000 | 575.44 | 99.62 | 70.19
122 0.008 | 525906 | 64.76 | 82.27 222 0.008 | 577.42 | 99.24 | 75.55
123 0.020 | 529.48 | 64.57 | 8046 223 0.020 | 580.39 | 99.08 | 74.06
124 0.050 | 538.28 | 64.27 | 77.65 224 0.050 | 587.83 | 98.84 | 71.74
125 0.100 | 552.94 | 63.94 | 74.41 225 0.100 | 600.22 | 98.57 { 698.15
126 0.180 | 576.30 | 63.56 | 70.84 228 0.180 | 620.04 | 98.28 | 66.38
127 0.280 | 605.71 | 63.26 | 68.07 227 0.280 | 644.82 | 98.07 | 64.41
128 0.380 | 635.03 | 63.14 | 66.82 228 0.380 | 669.80 | 98.00 | 63.74
129 0490 | 667.27 | 63.17 | 67.15 229 0.490 | 696.85 | 98.08 | 64.46
13D 0.800 | 699.53 | 63.36 | 68.96 230 0.800 | 724.11 | 98.29 | 66.47
131 0,700 | 728.84 | 63.50 | 71.19 231 0.700 | 748.88 | 98.53 | 68.82
132 0.790 | 755.23 | 63.80 | 73.16 232 0.790 | 771.19 | 98.75 | 70.91
133 0.870 | 778.68 | 63.91 | 7422 233 0.870 | 791.01 | 98.89 | 72.18
134 0.940 | 799.20 | 63.89 | 74.00 234 0.940 | 808.36 | 98.89 | 72.24
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Table 1. Continued
Section & | X/C F.S. BL [ WL Section& | XC | F.5. | BL | WL
Tap No. Tap No.
301 1.000 | 846.00 | 198.76 | 65.75 401 1.000 | 873.00 | 293.32 | 58.57 |
a02 0960 | 837.96 |198.95 | 67.54 402 0.960 | 866.89 |293.47| 58.01
303 0.920 | 820.08 | 189.00 | 88.82 403 0.920 | 859.89 |293.58 | 59.03
304 0.870 | 81598 | 199.25 | 70.41 404 0.870 | 850.98 |283.71| 60.30
305 0.810 | 807.94 | 190.44 | 72.23 405 0.810 | 840.61 | 293.86( 61.70
06 0.740 | 79391 | 199.64 | 74.10 406 0.740 | 828.35 | 294.01 | 63.15
307 0.670 | 779.89 | 199.80 | 75.61 407 0.870 | 816,00 | 294.13 | 64.27
308 0.600 | 765.87 | 199.20 | 76.75 408 0.600 | B03.82 |294.21 | 65.04
309 0.530 | 751.84 |200.00| 77.56 408 0.530 | 791.56 |294.28 | 65.49
310 0.460 | 737.82 |200.08 | 78.08 410 0.460 | 779.30 |204.28 | 65.68
311 0.380 | 723.80 |200.08 | 78.27 411 0.390 | 767.04 |204.27 | 65.56
312 0.320 | 708.77 |200.07 | 78.15 412 0.320 | 754.77 |204.23} 6522
313 0.250 | 685.75 | 200.01 | 77.65 413 0.250 | 74251 |294.16| 64.60
314 0.180 | 681.72 | 188.91 | 76.67 414 0.180 | 730.25 | 204.08 | 63.64
315 0.130 | 671.71 | 199.79 | 75.52 415 0.130 | 72149 | 203.96 | 62.65
316 0.000 | 863.69 |199.64] 74.12 418 0.090 | 71448 | 293.84 | 61.50
317 0060 | 657.68 |199.48{ 72.61 417 0.080 | 70922 |293.71| 80.23
318 0.040 | 853.68 |199.34 | 71.24 418 0.040 | 705.72 | 283.58 | 59.05
319 0.020 | B49.67 |199.15] 60.39 419 0.020 { 702.22 |293.42 | 57.48
320 0.008 | 647.27 | 10898 | 67.82 420 0.008 | 700.11 |293.27 | 56.13
321 0.000 | 845.66 |198.68 | 64.94 421 0.000 | 698.71 |293.,00 | 53.52
322 0.008 | 647.27 |198.39 | 62.24 422 0.008 | 700.11 |292.75 | 51.10
323 0.020 | 849.87 |198.27 | 61.03 423 0.020 | 702.22 |292.64 | 50.09
324 0.050 | 655.68 | 198.08 | 59.25 424 0.050 | 707.47 |292.51| 48.84
325 0.100 | 665.70 | 197.90 | 57.56 425 0.100 | 716.23 |292.39 | 47.72
326 0.180 | 681.72 | 197.74 | 56.07 426 0.180 | 730.25 | 292.30 | 46.89
327 0.280 | 701.76 | 197.66 | 55.24 427 0.280 | 747.76 | 292.28| 46.70
328 0.380 | 721.79 | 197.67 | 55.39 428 0.380 | 765.28 |202.31| 46.90
329 0490 | 743.83 | 197.81 | 56.67 429 0.480 | 784.55 |202.42| 47.98
330 0.600 | 765.87 | 198.05 | 58.03 430 0.600 | B03.82 |292.61{ 49.79
331 0.700 | 78590 | 198.31 | 61.43 431 0.700 | 821.34 | 29284 | 51.97
332 0.790 | 803.93 | 198.54 | 63.67 432 0.760 | 837.11 | 203.06 | 54.06
233 0.870 | 819.96 | 198.70 | 65.13 433 0.870 | B51.13 | 293.22 | 55.56
334 0.940 | 833.98 | 198.74 | B5.55 434 0.940 | 863.30 |203.20 | 56.24
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Section& | N/C F.5. BL | WL Section & F.S. BL | WL
Tap No. Tap No.
501 1.000 | 904.73 | 307.88 | 46.90 701 22500 | 0.00 | 30.84
502 0.960 | 898.18 |388.01 | 48.09 702 250.00 | 0.00 | 42.06
503 0.920 | 893.44 |308.87 | 48,89 703 27500 | 0.00 | 58.58
504 0.870 | 885.75 |398.17 | 49.60 704 300.00 | 0.00 | 7420
505 0.810 | 878.18 |398.26 | 50.53 705 325.00 ( 0.00 | 89.55
506 0.740 | 869.38 |398.35 | 51.37 706 375.00 | 0.00 |109.39
507 0.670 | B59.86 | 398.42 | 51.03 707 42500 | 0.00 |119.87
508 0.800 | B50.34 |398.47 | 52.46 801 853.00 | 28.00 | 88.10
509 0.530 | B40.82 | 398.40 | 52.66 ao2 925.00 | 28.00 | 86.10
510 0460 | B31.30 |398.40| 5284 803 087.00 | 28.00 | B4.30
511 0.380 | B21.78 |338.48| 52.39 804 1068.00 | 28.00 | 81.10
512 0.320 | B12.26 | 398.41 | 51.94
513 0250 | B02.75 |308.34 | 51.27
514 0.180 | 78322 |398.25( 50.38
515 0.130 | 78642 | 308.15 | 49.45
516 0.090 | 780.98 | 398.05| 48.46
517 0.080 | 776.90 | 307.04 | 47.44
518 0.040 | 774.19 | 307.84 | 46.51
519 0.020 | 771.75 | 400.11 | 44.14
. 520 0.008 | 789.75 | 3p4.27{ 45.99
521 0.000 | 788.75 |307.40| 42.26
522 0.008 | 760.83 | 39721 | 4053
523 0.020 | 77147 | 397.14| 39.82
524 0.050 | 775.54 |397.05| 38.83
525 0.100 | 782.34 | 396.98 | 38.27
526 0.180 | 793.22 | 396.94 | 37.93
527 0.280 | 806.82 |396.95 | 38.01
528 0.380 | 820.42 |396.99 | 38.40
520 0.490 | 835.38 |397.08 | 39.24
530 0.600 | 850.34 |397.23 | 40.69
531 0.700 | 883.94 |397.45 | 42.76
532 0.790 | 877.48 | 397.67 | 44.90
534 0.940 | 806.58 |397.84 | 46.53
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Table 2. Nominat Test Conditions

Mach Total Total Static Dynamic Chord Reynoids

Number | Pressure, psfa | Temperalure, °F | Pressure, psfa | Pressure, psf | Number, x 10%
0.4 1,630 80 1,530 97 1.0
03 2,500 80 2,347 150 15
0.6 870 105 781 191 1.0
06 1,487 ° 105 1,167 203 1.5
0.6 1,939 108 1,520 383 2.0
0.6 2,650 105 2,075 526 27
0.835 ao? 111 512 249 1.0
0.835 1,237 12 784 a2 15
0.835 1,612 111 1,022 498 2.0
0.835 2 205 1M1 1,397 a1 2.7
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NOMENCLATURE
Intercept of paint lumninescence calibration, psfa for pressure or non-dimensional for CP
(see Eq. (3)]
Model angle of attack, deg

Sensitivity of paint luminescence calibration, psf for pressure or non-dimensional for CP
[see Eq. (3)] :

Model buttock line, mm

Forebody drag coefficient, stability axis

Forebody pitching-moment coefficient, stability axis
Forebody lift coefficient, stability axis

Surface pressure coefficient

Model fuselage station, mm

Paint luminescence intensity at pressure, wind-on condition
Paint luminescence intensity in the absence of oxygen
Paint luminescence intensity at reference pressure, wind-off condition
Stern-Volmer constant

Free-stream Mach number

Pressure at wind-on condition, psfa

Partial pressure of oxygen, psfa

Pressure at wind-off condition, psfa

Chord Reynolds number, x 106

Model water line, mm

Ratio of pressure orifice position (as measured from wing leading edge) to local chord
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